ar X iv : 0 71 1 . 18 19 v 3 [ m at h . C O ] 2 6 Ju n 20 08 SPOTLIGHT TILING

نویسنده

  • BRIDGET EILEEN TENNER
چکیده

This article introduces spotlight tiling, a type of covering which is similar to tiling. The distinguishing aspects of spotlight tiling are that the “tiles” have elastic size, and that the order of placement is significant. Spotlight tilings are decompositions, or coverings, and can be considered dynamic as compared to typical static tiling methods. A thorough examination of spotlight tilings of rectangles is presented, including the distribution of such tilings according to size, and how the directions of the spotlights themselves are distributed. The spotlight tilings of several other regions are studied, and suggest that further analysis of spotlight tilings will continue to yield elegant results and enumerations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 6 . 27 19 v 1 [ m at h . G N ] 1 7 Ju n 20 08 A property of C p [ 0 , 1 ]

We prove that for every finite dimensional compact metric space X there is an open continuous linear surjection from Cp[0, 1] onto Cp(X). The proof makes use of embeddings introduced by Kolmogorov and Sternfeld in connection with Hilbert’s

متن کامل

ar X iv : 0 70 4 . 17 02 v 2 [ m at h . A G ] 2 6 Ju n 20 08 THE CANONICAL VOLUME OF 3 - FOLDS OF GENERAL TYPE WITH χ ≤ 0

We prove that the canonical volume K ≥ 1 30 for all 3-folds of general type with χ(O) ≤ 0. This bound is sharp.

متن کامل

ar X iv : 0 70 4 . 17 02 v 3 [ m at h . A G ] 2 7 Ju n 20 08 THE CANONICAL VOLUME OF 3 - FOLDS OF GENERAL TYPE WITH χ ≤ 0

We prove that the canonical volume K ≥ 1 30 for all 3-folds of general type with χ(O) ≤ 0. This bound is sharp.

متن کامل

ar X iv : 0 80 6 . 44 99 v 1 [ m at h . G N ] 2 7 Ju n 20 08 Aronszajn Compacta ∗

We consider a class of compacta X such that the maps from X onto metric compacta define an Aronszajn tree of closed subsets of X.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008